

Introducimos la matriz y calculamos su determinante :
$$A := \begin{pmatrix} 1 & -2 & m \\ m & -4 & 4 \\ -1 & m & -2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & -2 & m \\ m & -4 & 4 \\ -1 & m & -2 \end{pmatrix}$$
Calculamos el determinante de la matriz A:
$$\begin{vmatrix} \begin{pmatrix} 1 & -2 & m \\ m & -4 & 4 \\ -1 & m & -2 \end{pmatrix} \end{vmatrix} \longrightarrow m^3 - 12 \cdot m + 16$$
Anulamos el determinante :
$$resolver(m^3 - 12 \cdot m + 16 = 0) \longrightarrow \{\{m = -4\}, \{m = 2\}\}\}$$
Hallamos el rango para $m = 2$:
$$m := 2 \longrightarrow 2$$

$$rango(A) \longrightarrow 1$$
Hallamos el rango para $m = -4$:
$$m := -4 \longrightarrow -4$$

$$rango(A) \longrightarrow 2$$

ACTIVIDADES FINALES-PÁG. 34

1. A cuatro compañeros, A, B, C, D, de segundo de bachillerato, se les pide que respondan a la pregunta: "¿Crees que alguno de vosotros aprobará este curso? Di quiénes".

Las respuestas son: A opina que B y D; B opina que A y el mismo; C opina que A, B y D; D opina que el mismo. Expresa este enunciado en una matriz.

Expresamos la información del enunciado en una tabla, poniendo un 1 en el caso que un individuo opine de otro que aprobará el curso y un 0 en caso contrario.

	Α	В	С	D
Α	0	1	0	1
В	1	1	0	0
С	1	1	0	1
D	0	0	0	1

Los valores de la tabla dan lugar a la matriz $\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

2. Calcula a, b, c y de para que se cumpla
$$\begin{pmatrix} -2 & 3a \\ d & 7 \end{pmatrix} + \begin{pmatrix} a+b & 4 \\ 5 & c \end{pmatrix} = 2 \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Operamos e igualamos los elementos de las matrices resultantes:

$$\begin{pmatrix} a+b-2 & 3a+4 \\ d+5 & c+d+7 \end{pmatrix} = \begin{pmatrix} 2a & 2b \\ 2c & 2d \end{pmatrix} \implies \begin{cases} a+b-2=2a \\ 3a+4=2b \\ d+5=2c \\ c+d+7=2d \end{cases}$$

Resolviendo el sistema obtenemos: a = 0, b = 2, c = 12 y d = 19.

3. Dadas las matrices:
$$A = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 5 & 3 \\ -1 & 4 \end{pmatrix} y C = \begin{pmatrix} 0 & 2 \\ -2 & 4 \end{pmatrix}$$
; calcula:

b)
$$A - B + C$$
 c) $2A + B - 3C$

Los resultados de las operaciones son:

a)
$$A + B = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 5 & 3 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 4 \\ -1 & 6 \end{pmatrix}$$

b)
$$A - B + C = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 5 & 3 \\ -1 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -6 & 0 \\ -1 & 2 \end{pmatrix}$$

c)
$$2A + B - 3C = \begin{pmatrix} -2 & 2 \\ 0 & 4 \end{pmatrix} + \begin{pmatrix} 5 & 3 \\ -1 & 4 \end{pmatrix} - \begin{pmatrix} 0 & 6 \\ -6 & 12 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 5 & -4 \end{pmatrix}$$

d)
$$AB - AC = \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 5 & 3 \\ -1 & 4 \end{pmatrix} - \begin{pmatrix} -1 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 2 \\ -2 & 4 \end{pmatrix} = \begin{pmatrix} -4 & -1 \\ 2 & 0 \end{pmatrix}$$

e)
$$2AB - 3AC + 4BC = \begin{pmatrix} -12 & 2 \\ -4 & 16 \end{pmatrix} - \begin{pmatrix} -6 & 6 \\ -12 & 24 \end{pmatrix} + \begin{pmatrix} -24 & 88 \\ -32 & 56 \end{pmatrix} = \begin{pmatrix} -30 & 84 \\ -24 & 48 \end{pmatrix}$$

4. Una empresa de aceite de oliva elabora tres calidades: normal, extra y virgen extra y posee tres marcas X, Y, Z, distribuyendo su producción en cuatro almacenes. Las miles de litros almacenados en el primer almacén vienen expresados en la matriz:

X Y Z

$$\begin{pmatrix} 22 & 46 & 80 \\ 36 & 58 & 88 \\ 48 & 66 & 92 \end{pmatrix}$$

El segundo almacén tiene el doble que el primero, el tercero la mitad y el cuarto el triple. ¿Qué volumen de producción de aceite tiene en cada uno de los almacenes, y en total, de cada calidad y de cada una de las marcas?

Las matrices A_i , con i = 1, 2, 3, 4, muestran el volumen de aceite de cada uno de los almacenes:

$$A_{1} = \begin{pmatrix} 22 & 46 & 80 \\ 36 & 58 & 88 \\ 48 & 66 & 92 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 44 & 92 & 160 \\ 72 & 116 & 176 \\ 96 & 132 & 184 \end{pmatrix} \qquad A_{3} = \begin{pmatrix} 11 & 23 & 40 \\ 18 & 29 & 44 \\ 24 & 33 & 46 \end{pmatrix} \qquad A_{4} = \begin{pmatrix} 66 & 138 & 240 \\ 108 & 174 & 264 \\ 144 & 198 & 276 \end{pmatrix}$$

El volumen total de aceite almacenado de cada calidad y de cada una de las marcas es:

$$T = \begin{pmatrix} 143 & 299 & 520 \\ 234 & 377 & 572 \\ 312 & 429 & 598 \end{pmatrix}$$

5. Calcula los productos posibles entre las matrices:

$$A = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}, B = \begin{pmatrix} -4 & 2 & 1 \\ 0 & 5 & 3 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix} \mathbf{y} D = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 3 \\ 0 & -1 & 1 \end{pmatrix}$$

Los productos posibles son:

$$A \cdot B = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} -4 & 2 & 1 \\ 0 & 5 & 3 \end{pmatrix} = \begin{pmatrix} -12 & 16 & 9 \\ -8 & 4 & 2 \end{pmatrix}$$

$$B \cdot C = \begin{pmatrix} -4 & 2 & 1 \\ 0 & 5 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} -4 & 0 \\ 11 & 10 \end{pmatrix}$$

$$B \cdot D = \begin{pmatrix} -4 & 2 & 1 \\ 0 & 5 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 3 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -9 & 3 \\ 5 & -13 & 18 \end{pmatrix}$$

$$C \cdot A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 8 & 4 \\ 7 & 2 \\ 6 & 4 \end{pmatrix}$$

$$C \cdot B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} -4 & 2 & 1 \\ 0 & 5 & 3 \end{pmatrix} = \begin{pmatrix} -8 & 9 & 5 \\ -4 & 12 & 7 \\ -8 & 4 & 2 \end{pmatrix}$$

$$D \cdot C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -2 & 3 \\ 0 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 3 \\ 6 & -3 \\ 1 & -2 \end{pmatrix}$$

6. Obtén las matrices A y B que verifiquen los siguientes sistemas matriciales:

a)
$$\begin{cases} A + B = \begin{pmatrix} -1 \\ 8 \end{pmatrix} \\ A - B = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \end{cases}$$
b)
$$\begin{cases} 2A + B = \begin{pmatrix} 5 & -13 \\ 2 & 6 \end{pmatrix} \\ A - 2B = \begin{pmatrix} 0 & 1 \\ -9 & 3 \end{pmatrix} \end{cases}$$
c)
$$\begin{cases} A + B = \begin{pmatrix} 3 & 1 \\ 4 & 3 \end{pmatrix} \\ 2A - B = \begin{pmatrix} 0 & 5 \\ -7 & -3 \end{pmatrix} \end{cases}$$

Resolviendo los sistemas por reducción obtenemos:

a)
$$A = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
 y $B = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$$
 y $B = \begin{pmatrix} 1 & -3 \\ 4 & 0 \end{pmatrix}$

c)
$$A = \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix}$$
 y $B = \begin{pmatrix} 2 & -1 \\ 5 & 3 \end{pmatrix}$

7. Halla, en cada caso, todas las matrices que conmuten con:

a)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

Sea $X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ una matriz de dimensión 2x2 cualquiera. En cada caso se cumplirá:

a)
$$A \cdot X = X \cdot A \implies$$

$$\Rightarrow \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix} \Rightarrow \begin{pmatrix} a+c & b+d \\ a-2c & b-2d \end{pmatrix} = \begin{pmatrix} a+b & a-2b \\ c+d & c-2d \end{pmatrix} \Rightarrow$$

$$\Rightarrow \begin{cases} a+c=a+b \\ a-2c=c+d \\ b+d=a-2b \\ b-2d=c-2d \end{cases} \Rightarrow \begin{cases} c=b \\ d=a-3b \end{cases} \Rightarrow X = \begin{pmatrix} a & b \\ b & a-3b \end{pmatrix} con \ a, \ b \in R.$$

b)
$$B \cdot X = X \cdot B \implies$$

$$\Rightarrow \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} a & b \\ a+c & b+d \end{pmatrix} = \begin{pmatrix} a+b & b \\ c+d & d \end{pmatrix} \quad \Rightarrow \quad \begin{pmatrix} a+b & b \\ c+d & d \end{pmatrix}$$

$$\Rightarrow \begin{cases} a+b=a \\ b=b \\ c+d=a+c \\ d=b+d \end{cases} \Rightarrow \begin{cases} b=0 \\ d=a \end{cases} \Rightarrow X = \begin{pmatrix} a & 0 \\ c & a \end{pmatrix} con \ a, \ c \in R.$$

8. Para las matrices $A = \begin{pmatrix} 1 & -1 \\ 4 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & 3 \\ -1 & -2 \end{pmatrix}$, comprueba que se cumplen las siguientes propiedades de la trasposición de matrices:

a)
$$(A^t)^t$$

b)
$$(A+B)^t = A^t + B^t$$
 c) $(k \cdot A)^t = k \cdot A^t$ **d)** $(A \cdot B)^t = B^t \cdot A^t$

c)
$$(k \cdot A)^t = k \cdot A^t$$

$$\mathbf{d)} \left(A \cdot B \right)^t = B^t \cdot A^t$$

En cada apartado obtenemos:

a)
$$A^t = \begin{pmatrix} 1 & 4 \\ -1 & 0 \end{pmatrix}$$
 y $\begin{pmatrix} A^t \end{pmatrix}^t = \begin{pmatrix} 1 & -1 \\ 4 & 0 \end{pmatrix}$

b)
$$A + B = \begin{pmatrix} 1 & -1 \\ 4 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 3 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & -2 \end{pmatrix} y (A + B)^t = \begin{pmatrix} 1 & 3 \\ 2 & -2 \end{pmatrix}$$

$$A^{t} + B^{t} = \begin{pmatrix} 1 & 4 \\ -1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & -2 \end{pmatrix}$$

c)
$$k \cdot A = k \cdot \begin{pmatrix} 1 & -1 \\ 4 & 0 \end{pmatrix} = \begin{pmatrix} k & -k \\ 4k & 0 \end{pmatrix}$$
 y $(k \cdot A)^t = \begin{pmatrix} k & 4k \\ -k & 0 \end{pmatrix}$

$$k \cdot A^{t} = k \cdot \begin{pmatrix} 1 & 4 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} k & 4k \\ -k & 0 \end{pmatrix}$$

d)
$$A \cdot B = \begin{pmatrix} 1 & -1 \\ 4 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 3 \\ -1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 12 \end{pmatrix} y (A \cdot B)' = \begin{pmatrix} 1 & 0 \\ 5 & 12 \end{pmatrix}$$

$$B^{t} \cdot A^{t} = \begin{pmatrix} 0 & -1 \\ 3 & -2 \end{pmatrix} + \begin{pmatrix} 1 & 4 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 5 & 12 \end{pmatrix}$$

ACTIVIDADES FINALES-PÁG. 35

9. Descompón las matrices dadas en suma de una matriz simétrica y otra antisimétrica:

a)
$$A = \begin{pmatrix} -1 & 5 \\ 1 & 5 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 0 & -3 \\ 1 & 2 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 1 & 3 & 1 \\ 7 & 4 & 1 \\ -1 & -5 & 4 \end{pmatrix}$$

La descomposición de la matriz M es M = S + H, siendo S la matriz simétrica, $S=\frac{M+M^t}{2}$ y H la matriz antisimétrica, $H=\frac{M-M^t}{2}$.

En cada caso se obtiene:

a)
$$A = \begin{pmatrix} -1 & 5 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 3 & 5 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix}$$

b)
$$B = \begin{pmatrix} 0 & -3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 2 \end{pmatrix} + \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 1 & 3 & 1 \\ 7 & 4 & 1 \\ -1 & -5 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 0 \\ 5 & 4 & -2 \\ 0 & -2 & 4 \end{pmatrix} + \begin{pmatrix} 0 & -2 & 1 \\ 2 & 0 & 3 \\ -1 & -3 & 0 \end{pmatrix}$$

10. Dadas las matrices
$$A=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$$
 y $B=\begin{pmatrix}0&2\\1&0\end{pmatrix}$, calcula $\mathbf{A^{97}}$ y $\mathbf{B^{59}}$.

En cada uno de los dos casos calculamos las potencias sucesivas de A y B.

$$A^{2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -I$$

$$A^3 = A^2 \cdot A = -1 \cdot A = -A$$

$$A^4 = A^3 \cdot A = -A \cdot A = -A^2 - (-1) = 1$$

$$A^5 = A^4 \cdot A = I \cdot A = A$$

$$A^6 = A^5 \cdot A = A \cdot A = -1$$

etcétera.

Observamos que las potencies de la matriz A se repiten de cuatro en cuatro. Así:

$$A^{97} = A^{4 \cdot 24 + 1} = (A^4)^{24} \cdot A = I^{24} \cdot A = I \cdot A = A$$

Calculando las potencias sucesivas de $B = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$ obtenemos que:

$$B^2 = B \cdot B = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \qquad \qquad B^3 = B^2 \cdot B = \begin{pmatrix} 0 & 4 \\ 2 & 0 \end{pmatrix}$$

$$B^4 = B^3 \cdot B = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$$

$$B^5 = B^4 \cdot B = \begin{pmatrix} 0 & 8 \\ 4 & 0 \end{pmatrix}$$

Podemos continuar y observar que las potencias pares siguen una ley de recurrencia y las impares otra. Es decir:

Sin es par:
$$B^n = \begin{pmatrix} 2^{\frac{n}{2}} & 0 \\ 0 & 2^{\frac{n}{2}} \end{pmatrix}$$
 y sin es impar: $B^n = \begin{pmatrix} 0 & 2^{\frac{n+1}{2}} \\ \frac{n-1}{2} & 0 \end{pmatrix}$.

Por tanto,
$$B^{59} = \begin{pmatrix} 0 & 2^{30} \\ 2^{29} & 0 \end{pmatrix}$$

11. Utilizando las operaciones elementales por filas, obtén matrices triangulares equivalentes a las siguientes matrices:

a)
$$\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$

$$\mathbf{b}) \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ -1 & 1 & 0 \end{pmatrix}$$

c)
$$\begin{pmatrix} -1 & 1 & 2 \\ 1 & 3 & -2 \\ 4 & 2 & 0 \end{pmatrix}$$

a) Realizando la operación elemental $3F_1 - 2F_2 \rightarrow F_2$, obtenemos:

$$\begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix} \cong \begin{pmatrix} 2 & 1 \\ 0 & -5 \end{pmatrix}$$

b) Realizando las operaciones elementales $F_2 - 2F_1 \rightarrow F_2$, $F_3 + F_1 \rightarrow F_3$ y $F_3 + F_2 \rightarrow F_3$, obtenemos:

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ -1 & 1 & 0 \end{pmatrix} \cong \begin{pmatrix} 1 & 2 & 1 \\ 0 & -3 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cong \begin{pmatrix} 1 & 2 & 1 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

c) Realizando las operaciones elementales $F_2+F_1 \rightarrow F_2$, $F_3+4F_1 \rightarrow F_3$ y $3F_2-2F_3 \rightarrow F_3$, obtenemos:

$$\begin{pmatrix} -1 & 1 & 2 \\ 1 & 3 & -2 \\ 4 & 2 & 0 \end{pmatrix} \cong \begin{pmatrix} -1 & 1 & 2 \\ 0 & 4 & 0 \\ 0 & 6 & 8 \end{pmatrix} \cong \begin{pmatrix} -1 & 1 & 2 \\ 0 & 4 & 0 \\ 0 & 0 & -16 \end{pmatrix}$$

12. Halla las matrices inversas de las siguientes matrices haciendo uso de la definición de matriz inversa:

a)
$$A = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$$

$$\mathbf{b)} \ B = \begin{pmatrix} 1 & 1 \\ 1 & -2 \end{pmatrix}$$

c)
$$C = \begin{pmatrix} 2 & -3 \\ -4 & 6 \end{pmatrix}$$

a) Sea
$$A^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 se cumplirá A · A⁻¹ = I:

$$\begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies \begin{cases} 2a - 5c = 1 \\ -a + 3c = 0 \\ 2b - 5d = 0 \\ -b + 3d = 1 \end{cases} \implies \begin{cases} a = 3 \\ b = 5 \\ c = 1 \\ d = 2 \end{cases} \implies A^{-1} = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$$

Procediendo como en el apartado anterior, obtenemos:

b)
$$B^{-1} = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} \end{pmatrix}$$
 c) No existe C

13. Calcula las matrices inversas de las matrices que siguen por el método de Gauss-Jordan:

a)
$$A = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ **c)** $C = \begin{pmatrix} -1 & 0 & -1 \\ -1 & 0 & 0 \\ 2 & -1 & 1 \end{pmatrix}$

Utilizando el método de Gauss-Jordan obtenemos:

a) Realizamos las siguientes operaciones elementales por filas: $F_2 \rightarrow 2F_1 + F_2$; $F_2 \rightarrow 1/3$ F_2 y $F_1 \rightarrow F_1 - F_2$.

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ -2 & 1 & 0 & 1 \end{pmatrix} \cong \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 3 & 2 & 1 \end{pmatrix} \cong \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & \frac{2}{3} & \frac{1}{3} \end{pmatrix} \cong \begin{pmatrix} 1 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 1 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

La matriz inversa de A es $A^{-1} = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$

b) Realizamos las siguientes operaciones elementales por filas: $F_2 \rightarrow F_1 - F_2$; $F_3 \rightarrow F_3 - F_2$; $F_2 \rightarrow F_2 + F_3$ y $F_1 \rightarrow F_1 - F_2$.

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \cong \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \cong \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{pmatrix} \cong$$

$$\cong \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{pmatrix} \cong \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{pmatrix}$$

La matriz inversa de B es $B^{-1}=\begin{pmatrix}1&0&-1\\0&0&1\\-1&1&1\end{pmatrix}$

c) Procediendo como en el apartado anterior, obtenemos que la matriz inversa de C es:

$$C^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ -1 & -1 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

14. Dadas las matrices $A = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix}$ y $C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, encuentra, en cada caso, la matriz X que cumple:

a)
$$X \cdot A + 2B = C$$

b)
$$A \cdot X - B = C$$

c)
$$A \cdot X \cdot B = C$$

a) Despejamos la matriz incógnita X y obtenemos: $X = (C - 2B) \cdot A^{-1}$.

Operando con las matrices tenemos:

$$C - 2B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 6 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
$$X = \begin{pmatrix} 1 & 0 \\ -3 & 2 \end{pmatrix} \cdot \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 2 \\ 5 & -8 \end{pmatrix}$$

b) Despejamos la matriz incógnita X y obtenemos: $X = A^{-1} \cdot (B + C)$.

Operando con las matrices tenemos:

$$B + C = \begin{pmatrix} 0 & 1 \\ 3 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 6 & 5 \end{pmatrix} \qquad A^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$
$$X = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 \\ 6 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 7 \\ -5 & -2 \end{pmatrix}$$

c) Despejamos la matriz incógnita X y obtenemos: $X = A^{-1} \cdot C \cdot B^{-1}$.

Operando con las matrices tenemos:

$$A^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \qquad B^{-1} = \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ 1 & 0 \end{pmatrix}$$

$$X = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -\frac{1}{3} & \frac{1}{3} \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{13}{3} & \frac{5}{3} \\ -\frac{4}{3} & -\frac{2}{3} \end{pmatrix}$$

15. Calcula el rango de las siguientes matrices:

a)
$$\begin{pmatrix} 2 & -1 & 0 \\ 6 & -3 & 4 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -1 \\ 3 & 2 & -1 \end{pmatrix}$$

c)
$$\begin{pmatrix} -2 & 1 & 0 & 3 \\ 3 & -1 & 1 & -2 \\ 1 & 1 & 3 & 6 \end{pmatrix}$$

Realizamos operaciones elementales en las filas de las matrices, obteniendo matrices equivalentes, es decir, con el mismo rango.

a) Rango de
$$\begin{pmatrix} 2 & -1 & 0 \\ 6 & -3 & 4 \end{pmatrix}$$
 = Rango de $\begin{pmatrix} 2 & -1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ = 2 .

b) Rango de
$$\begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -1 \\ 3 & 2 & -1 \end{pmatrix}$$
 = Rango de $\begin{pmatrix} 1 & -1 & 0 \\ 0 & -3 & 1 \\ 0 & 2-5 & 1 \end{pmatrix}$ = Rango de $\begin{pmatrix} 1 & -1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -2 \end{pmatrix}$ = 3 .

c) Rango de
$$\begin{pmatrix} -2 & 1 & 0 & 3 \\ 3 & -1 & 1 & -2 \\ 1 & 1 & 3 & 6 \end{pmatrix}$$
 = Rango de $\begin{pmatrix} -2 & 1 & 0 & 3 \\ 0 & 1 & 2 & 5 \\ 0 & 3 & 6 & 15 \end{pmatrix}$ = Rango de $\begin{pmatrix} -2 & 1 & 0 & 3 \\ 0 & 1 & 2 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ = 2.

16. a) Escribe cuatro matrices de dimensión 2x4 que tengan, respectivamente, rango 1, 2, 3 y 4. Razona tu respuesta.

b) Escribe cuatro matrices de orden 4 que tengan, respectivamente, rango 1, 2, 3 y 4. Razona tu respuesta.

En ambos casos existen múltiples respuestas.

a) La matriz de dimensión 2x4,

- con rango 1 es, por ejemplo,
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ -2 & -2 & -2 & -2 \end{pmatrix}$$

- con rango 2 es, por ejemplo,
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

- con rango 3 o 4 no es posible construirlas.

b) Un ejemplo podría ser:

- con rango 1:
$$\begin{pmatrix} 1 & -1 & 2 & -3 \\ 2 & -2 & 4 & -6 \\ 5 & -5 & 10 & -15 \\ 10 & -10 & 20 & -30 \end{pmatrix}$$
 - con rango 2:
$$\begin{pmatrix} 1 & -1 & 2 & -3 \\ 0 & 5 & 0 & 2 \\ 1 & 4 & 2 & -1 \\ 5 & -5 & 10 & -15 \end{pmatrix}$$

- con rango 3:
$$\begin{pmatrix} 1 & -1 & 2 & -3 \\ 0 & 5 & 0 & 2 \\ 1 & 1 & 3 & 4 \\ 2 & 5 & 5 & 3 \end{pmatrix}$$
 - con rango 4:
$$\begin{pmatrix} 1 & -1 & 2 & -3 \\ 0 & 5 & 0 & 2 \\ 1 & 1 & 3 & 4 \\ 0 & 5 & 5 & 3 \end{pmatrix}$$

17. Calcula el rango de las siguientes matrices según los valores del parámetro a.

a)
$$\begin{pmatrix} a+2 & a-2 \\ 1 & 2 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 1 & a \\ 1 & 1 & a \\ 0 & a & 1 \end{pmatrix}$

b)
$$\begin{pmatrix} 2 & 1 & a \\ 1 & 1 & a \\ 0 & a & 1 \end{pmatrix}$$

c)
$$\begin{pmatrix} 2a & 1 & 1 \\ 2 & a & 1 \\ 2 & 1 & a \end{pmatrix}$$

Las soluciones son:

a) Rango de
$$\begin{pmatrix} a+2 & a-2 \\ 1 & 2 \end{pmatrix}$$
 = Rango de $\begin{pmatrix} 1 & 2 \\ a+2 & a-2 \end{pmatrix}$ = Rango de $\begin{pmatrix} 1 & 2 \\ 0 & a+6 \end{pmatrix}$

Si a = - 6 el rango es 1, y si a \neq - 6 el rango es 2.

b) Rango de
$$\begin{pmatrix} 2 & 1 & a \\ 1 & 1 & a \\ 0 & a & 1 \end{pmatrix}$$
 = Rango de $\begin{pmatrix} 2 & 1 & a \\ 0 & 1 & a \\ 0 & a & 1 \end{pmatrix}$ = Rango de $\begin{pmatrix} 2 & 1 & a \\ 0 & 1 & a \\ 0 & 0 & a^2 - 1 \end{pmatrix}$

Si a \neq 1 y a \neq - 2 el rango es 3.

Si a = -1 o a = 1 rango es 2.

c) Rango de
$$\begin{pmatrix} 2a & 1 & 1 \\ 2 & a & 1 \\ 2 & 1 & a \end{pmatrix}$$
 = Rango de $\begin{pmatrix} 2a & 1 & 1 \\ 0 & a^2 - 1 & a - 1 \\ 0 & a - 1 & 1 - a \end{pmatrix}$ = Rango de $\begin{pmatrix} 2a & 1 & 1 \\ 0 & a^2 - 1 & a - 1 \\ 0 & 0 & a^2 + a - 2 \end{pmatrix}$

Si a \neq - 2 y a \neq 1 el rango es 3.

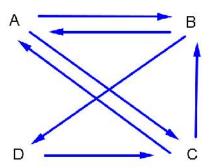
Si a = -2 el rango es 2.

Si a = 1 el rango es 1.

18. Dibuja el grafo de cuatro vértices, cuya matriz asociada es la matriz anterior determina los contagios directos de una determinada enfermedad. Halla, calculando M^2 y M^3 , los contagios de segundo y tercer orden $M = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$

$$M = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Dibujamos el grafo:



Calculamos M²:

$$M^{2} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

Los valores de los elementos de esta matriz muestran los contagios indirectos de segundo orden. Así, por ejemplo:

a₁₁ = 2 indica que A se contagia a sí mismo a través de B o C al existir los caminos A-B-A o A-C-A.

 $a_{12} = 1$ indica que A contagia a B a través de un tercero al existir el camino A-C-B.

Calculamos M³:

$$M^{3} = \begin{pmatrix} 2 & 1 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 3 & 2 & 0 & 1 \\ 2 & 2 & 2 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Los valores de los elementos de esta matriz muestran los contagios indirectos de tercer orden. Así, por ejemplo:

a₁₂ = 2 indica que A contagia a B a través de otros dos individuos al existir los caminos A-C-A-B o A-B-A-B.

a₃₂ = 2 indica que C contagia a B a través de otros dos individuos al existir los caminos C-A-C-B o C-B-A-B.

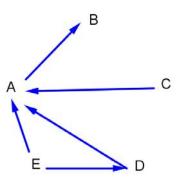
ACTIVIDADES ACCESO UNIVERSIDAD-PÁG. 38

- 1. Entre cinco personas hay la siguiente relación de influencias: A influye sobre B; E sobre D; C, D y E influyen sobre A. Se pide:
 - a) Construye la matriz de influencias: M.
 - b) Halla la matriz de influencias de dos etapas: M².

c) Interpreta la suma de las filas de M y de sus columnas.

Dibujamos el grafo con las relaciones de influencias que se describen en el enunciado.

a) Teniendo en cuenta que los individuos de las filas influyen sobre los individuos de las columnas, como puede verse en el grafo, la matriz de influencias es:



b) La matriz de influencias en dos etapas es M²:

$$\mathsf{M}^2 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

El significado de los elementos que valen 1 es:

- a₃₂ = 1: C influye en B a través de A.
- a₄₂ = 1: D influye en B a través de A.
- a₅₁ = 1: E influye en A a través de D.
- a₅₂ = 1: E influye en B a través de A.
- c) La suma de las filas es 1, 0, 1, 1 y 2, respectivamente.

Estos valores significan:

Fila	Suma de la fila	Significado
Primera	1	A influye en una persona, B
Segunda	0	B no influye en nadie
Tercera	1	C influye en una persona A
Cuarta	1	D influye en una persona, A
Quinta	2	E influye en dos personas, A y D

La suma de las columnas es 3, 1, 0, 1, 0, respectivamente.

Estos valores significan:

Columna	Suma de la columna	Significado
Primera	3	A está influenciado por 3 personas, C, D y E
Segunda	1	B está influenciado por una persona, A

Tercera	0	C no está influenciado
Cuarta	1	D está influenciado por una persona, E
Quinta	0	E honesta influenciado

- **2.** Sean las matrices $A = \begin{pmatrix} 2 & a \\ -2 & 0 \end{pmatrix} y B = \begin{pmatrix} 3 & 0 \\ b & -1 \end{pmatrix}$,
 - a) Determina el valor de los parámetros a y b para que se cumpla $A \cdot B = B \cdot A$.
 - b) Determina el valor de a para el cual se verifica $A^2 = A$.
- A) Si A \cdot B = B \cdot A, entonces:

$$\begin{pmatrix} 2 & a \\ -2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ b & -1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ b & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & a \\ -2 & 0 \end{pmatrix} \implies \begin{pmatrix} 6+ab & -1 \\ -6 & 0 \end{pmatrix} = \begin{pmatrix} 6 & 3a \\ 2b+2 & ab \end{pmatrix}$$

Igualando términos:

$$\begin{cases} 6 + ab = 6 \\ -a = 3a \\ -6 = 2b + 2 \end{cases} \Rightarrow \begin{cases} a = 0 \\ b = -4 \end{cases}$$

b) Si $A^2 = 2A$, entonces:

$$\begin{pmatrix} 2 & a \\ -2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & a \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 2a \\ -4 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 4 - 2a & 2a \\ -4 & -2a \end{pmatrix} = \begin{pmatrix} 4 & 2a \\ -4 & 0 \end{pmatrix}$$

Igualando términos:

$$\begin{cases} 4 - 2a = 4 \\ 2a = 2a \\ -2a = 0 \end{cases} \Rightarrow \begin{cases} a = 0 \end{cases}$$

3. Sean las matrices $A=\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}e$ $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, determina x para que se verifique la ecuación A² – 6A + 5I = O, donde O es la matriz cuyos elementos son nulos.

Operando:

$$A^{2} = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \cdot \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} = \begin{pmatrix} x^{2} & 0 \\ 0 & x^{2} \end{pmatrix}$$

$$A^{2} - 6A + 5I = \begin{pmatrix} x^{2} & 0 \\ 0 & x^{2} \end{pmatrix} - \begin{pmatrix} 6x & 0 \\ 0 & 6x \end{pmatrix} + \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} x^{2} - 6x + 5 & 0 \\ 0 & 0 & x^{2} - 6x + 5 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Igualando términos, obtenemos:

$$x^2 - 6x + 5 = 0 \quad \Rightarrow \quad \begin{cases} x = 1 \\ x = 5 \end{cases}$$

4. Un investigador médico estudia la difusión de un virus en una población de 1000 cobayas de laboratorio. En cualquier semana, hay una probabilidad del 80% de que un cobaya infectado venza al virus y un 10% de que un cobaya no infectado quede infectado. Actualmente, hay 100 cobayas infectados por el virus. ¿Cuántos estarán infectados la próxima semana? ¿Y dentro de dos semanas? ¿Se estabilizará el número de cobayas infectados?

La matriz, P, de las probabilidades de transición es:

Estarán infectados la próxima semana:

$$P \cdot X_0 = \begin{pmatrix} 0.20 & 0.10 \\ 0.80 & 0.90 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 900 \end{pmatrix} = \begin{pmatrix} 110 \\ 890 \end{pmatrix} = X_1$$

Estarán infectados dentro de dos meses:

$$P \cdot X_1 = \begin{pmatrix} 0.20 & 0.10 \\ 0.80 & 0.90 \end{pmatrix} \cdot \begin{pmatrix} 110 \\ 890 \end{pmatrix} = \begin{pmatrix} 111 \\ 889 \end{pmatrix} = X_2$$

$$\text{De otra forma: } P^2 \cdot \boldsymbol{X}_0 = \begin{pmatrix} 0.20 & 0.10 \\ 0.80 & 0.90 \end{pmatrix} \cdot \begin{pmatrix} 0.20 & 0.10 \\ 0.80 & 0.90 \end{pmatrix} \cdot \begin{pmatrix} 110 \\ 890 \end{pmatrix} = \begin{pmatrix} 111 \\ 889 \end{pmatrix} = \boldsymbol{X}_2$$

Calculamos el valor estacionario:

Sea
$$X_{est} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, entonces:

$$P \cdot X_{est} = X_{est} \implies \begin{pmatrix} 0.20 & 0.10 \\ 0.80 & 0.90 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \implies \begin{cases} 0.20x + 0.10y = x \\ 0.80x + 0.90x = y \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} -0.80x + 0.10y = 0 \\ 0.80x - 0.10y = 0 \end{cases} \Rightarrow \{y = 8x\}$$

Si x + y = 1000, entonces:
$$\begin{cases} x = 899 \\ y = 111 \end{cases}$$
.

5. Una residencia aloja a 200 estudiantes que estudian en una facultad de ciencias. Todos los que estudian matemáticas más de una hora un día las estudian menos de una hora al día siguiente. Una cuarta parte de los que estudian matemáticas menos de una hora un día las estudian más de una hora al día siguiente. La mitad de los estudiantes han estudiado matemáticas hoy más de una hora. ¿Cuántos las estudiaran más de una hora mañana? ¿Y pasado mañana? ¿Y al tercer día? ¿Cómo evolucionan el número de estudiantes de cada apartado con el paso del tiempo?

La matriz, P, de las probabilidades de transición es:

$$+ 1 hora - 1 hora$$

 $+ 1 hora \begin{pmatrix} 0 & 0.25 \\ -1 hora \begin{pmatrix} 1 & 0.75 \end{pmatrix} = P$

Y la matriz de estado, representando la población actual en cada uno de los dos estados, es:

$$X_0 = \begin{pmatrix} 100 \\ 100 \end{pmatrix}$$

La matriz del día siguiente es:

$$P \cdot X_0 = \begin{pmatrix} 0 & 0.25 \\ 1 & 0.75 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 100 \end{pmatrix} = \begin{pmatrix} 25 \\ 175 \end{pmatrix} = X_1$$

La matriz del segundo día es:

$$P \cdot X_1 = \begin{pmatrix} 0 & 0.25 \\ 1 & 0.75 \end{pmatrix} \cdot \begin{pmatrix} 25 \\ 175 \end{pmatrix} = \begin{pmatrix} 44 \\ 156 \end{pmatrix} = X_2$$

La matriz del tercer día es:

$$P \cdot X_2 = \begin{pmatrix} 0 & 0.25 \\ 1 & 0.75 \end{pmatrix} \cdot \begin{pmatrix} 44 \\ 156 \end{pmatrix} = \begin{pmatrix} 39 \\ 161 \end{pmatrix} = X_3$$

Calculamos el valor estacionario:

Sea
$$X_{est} = \begin{pmatrix} x \\ y \end{pmatrix}$$
, entonces:
$$P \cdot X_{est} = X_{est} \implies \begin{pmatrix} 0 & 0.25 \\ 1 & 0.75 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \implies \begin{cases} 0.25y = x \\ x + 0.75x = y \end{cases} \Rightarrow \begin{cases} -x + 0.25y = 0 \\ x - 0.25y = 0 \end{cases} \implies \{y = 4x \}$$

Si x + y = 200, entonces:
$$\begin{cases} x = 40 \\ y = 160 \end{cases}$$

6. Encuentra las matrices que conmutan con $A = \begin{pmatrix} 2 & 4 \\ 0 & 2 \end{pmatrix}$.

Sea
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 la matriz que conmuta con $A = \begin{pmatrix} 2 & 4 \\ 0 & 2 \end{pmatrix}$.

Se cumplirá $A \cdot X = X \cdot A$, entonces:

$$\begin{pmatrix} 2 & 4 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} 2 & 4 \\ 0 & 2 \end{pmatrix} \implies \begin{pmatrix} 2a & 4a + 2b \\ 2c & 4c + 2d \end{pmatrix} = \begin{pmatrix} 2a + 4c & 2b + 4d \\ 2c & 2d \end{pmatrix}$$

Igualando términos:

$$\begin{cases} 2a = 2a + 4c \\ 4a + 2b = 2b + 4d \\ 4c + 2d = 2d \end{cases} \Rightarrow \begin{cases} 4c = 0 \\ 4a = 4d \end{cases} \Rightarrow \begin{cases} c = 0 \\ a = d \end{cases}$$

Las matrices que conmutan con A tiene la forma $X = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, siendo a y b números reales cualesquiera.

7. Calcula, razonando el procedimiento, la matriz $\mathbf{A^{17}}$, siendo $A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$.

Realizamos las potencias sucesivas de la matriz A.

$$A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$$

$$A^{2} = A \cdot A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -3 & -1 \end{pmatrix}$$

$$A^{4} = A^{3} \cdot A = \begin{pmatrix} -1 & 0 \\ -3 & -1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix}$$

Entonces,
$$A^{17} = \begin{pmatrix} -1 & 0 \\ 17 & -1 \end{pmatrix}$$

- 8. Una factoría de muebles fabrica tres modelos de estanterías A, B y C, cada una de dos tamaños, grande y pequeño. Produce diariamente 1000 estanterías grandes y 8000 pequeñas de tipo A; 8000 grandes y 6000 pequeñas de tipo B, y 4000 grandes y 6000 pequeñas de tipo C. Cada estantería grande lleva 16 tornillos y 6 soportes, y cada estantería pequeña lleva 12 tornillos y 4 soportes, en cualquiera de los tres modelos,
- a) Representa esta información en dos matrices.
- b) Halla una matriz que represente la cantidad de tornillos y de soportes necesarios para la producción diaria de cada uno de los seis modelos-tamaño de estantería.
- a) Las matrices son:

b) La matriz que representa la cantidad de tornillos y de soportes necesarios para la producción diaria de cada uno de los seis modelos-tamaño de estantería es el resultado del producto que sigue:

$$\begin{pmatrix}
16 & 12 \\
6 & 4
\end{pmatrix} \cdot \begin{pmatrix}
1000 & 8000 & 4000 \\
8000 & 6000 & 6000
\end{pmatrix} = \begin{pmatrix}
112 & 000 & 200 & 000 & 136 & 000 \\
38 & 000 & 72 & 000 & 48 & 000
\end{pmatrix} \frac{Tornillos}{Soportes}$$

9. Dada la matriz $A = \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix}$, halla la matriz B que cumpla A + B = A · B.

Resolviendo la ecuación matricial, obtenemos:

$$A + B = A \cdot B$$
 \Rightarrow $A = A \cdot B - B$ \Rightarrow $A = (A - I) \cdot B$ \Rightarrow $B = (A - I)^{-1} \cdot A$

Las matrices $A - Iy (A - I)^{-1}$ son:

$$A - I = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} y (A - I)^{-1} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$

La matriz B es:

$$B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix}$$