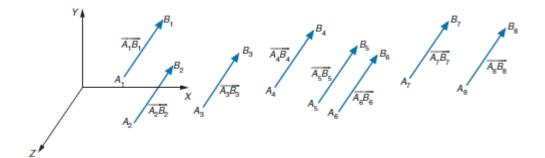
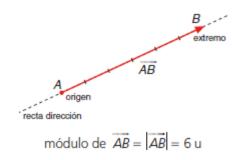


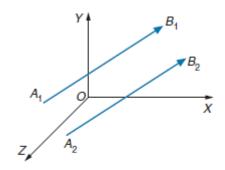
- **Vector libre**
- **Operaciones con vectores libres**
- Dependencia e independencia de vectores. Bases
- Sistemas de referencia
- Ecuaciones de la recta
- **Ecuaciones del plano**
- 7. Posiciones relativas de dos y tres planos
- 8. Posiciones relativas de una recta y un plano
- Posiciones relativas de dos rectas

1. Vector libre

- Vector fijo. Un vector fijo de origen A y extremo
 B es un segmento orientado caracterizado por:
- Dirección o recta que lo contiene.
- **Sentido** u orientación de la recta.
- Módulo o longitud del segmento orientado.
- Vector libre. Los vectores que tienen la misma dirección, el mismo sentido y el mismo módulo sellaman equipolentes. Los vectores equipolentes tiene las mismas coordenadas. Todos los vectores equipolentes a uno dado definen un vector libre.







$$\bullet \ \overline{A_1B_1} = \overline{A_2B_2}$$

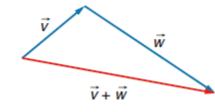
•
$$A_1B_1 = A_2B_2$$

2. Operaciones con vectores libres

2.1. Suma de vectores libres

• La suma de los vectores libres $\vec{v} = (a, b, c)$ y $\vec{v}' = (a', b', c')$ es el vector libre:

$$\vec{v} + \vec{v}' = (a + a', b + b', c + c')$$



Propiedades

1. Asociativa. Para tres vectores libres cualesquiera:

$$\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$$

2. Elemento neutro. El elemento neutro para la suma es el vector nulo: $\vec{0} = (0, 0, 0)$, ya que verifica:

$$\vec{u} + \vec{0} = \vec{0} + \vec{u} = \vec{u}$$

3. Elemento opuesto. El vector opuesto de un vector $\vec{v} = (a, b, c)$ es $-\vec{v} = (-a, -b, -c)$, ya que se verifica:

$$\vec{v} + (-\vec{v}) = (-\vec{v}) + \vec{v} = \vec{0}$$

4. Conmutativa. Para dos vectores libres cualesquiera:

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

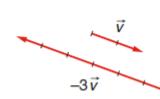
- 2. Operaciones con vectores libres
- 2.2. Producto de un número real por un vector

 El producto de un número real t por un vector libre v = (a, b, c) es el vector libre:

$$t \cdot \vec{v} = t \vec{v} = (ta, tb, tc)$$

Į.

Propiedades



1. Distributiva del producto respecto a la suma de vectores. Para un número real t cualquiera y dos vectores libres \vec{u} y \vec{v} cualesquiera se verifica:

$$t \cdot (\vec{u} + \vec{v}) = t \cdot \vec{u} + t \cdot \vec{v}$$

2. Distributiva de la suma de números reales por un vector. Para dos números reales t y s cualesquiera y un vector libre \vec{u} cualquiera se verifica:

$$(t+s) \cdot \vec{u} = t \cdot \vec{u} + s \cdot \vec{u}$$

 Asociativa mixta. Para dos números reales t y s cualesquiera y un vector libre ü cualquiera se verifica:

$$(t \cdot s) \cdot \vec{u} = t \cdot (s \cdot \vec{u})$$

4. Elemento neutro. Para un vector libre \vec{u} cualquiera se verifica:

$$1 \cdot \vec{u} = \vec{u}$$

- 3. Dependencia e independência de vectores. Bases
- 3.1. Vectores dependientes

• **Dos vectores** son **linealmente dependientes** si verifican una de las siguientes condiciones:

• Tres vectores son linealmente dependientes si verifican una de las siguientes condiciones:

$$\exists t, s, r \in \mathbb{R}$$
 no nulos a la vez
$$| t\vec{u} + s\vec{v} + r\vec{w} = \vec{0} \Leftrightarrow \frac{\vec{u}, \vec{v} \text{ y } \vec{w} \text{ son}}{\text{coplanarios}} \Leftrightarrow \text{rango} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = 1 \text{ o } 2$$

- 3. Dependencia e independência de vectores. Bases
- 3.2. Vectores independientes

 Dos vectores son linealmente independientes si verifican una de las siguientes condiciones:

$$t\vec{u} + s\vec{v} = \vec{0} \Rightarrow t = s = 0 \Leftrightarrow \frac{\vec{u} \ \text{y} \ \vec{v} \ \text{tienen}}{\text{distinta dirección}} \Leftrightarrow \text{rango} \begin{pmatrix} a_1 \ b_1 \ c_1 \\ a_2 \ b_2 \ c_2 \end{pmatrix} = 2$$

• Tres vectores son linealmente independientes si verifican una de las siguientes condiciones:

$$t\vec{u} + s\vec{v} + r\vec{w} = \vec{0} \Rightarrow t = s = r = 0 \Leftrightarrow \frac{\vec{u}, \vec{v} \text{ y } \vec{w} \text{ no son}}{\text{coplanarios}} \Leftrightarrow \text{rango} \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix} = 3$$

3. Dependencia e independência de vectores. Bases

3.3. Base de vectores

• En el espacio de vectores del espacio \mathbb{R}^3 , tres vectores linealmente independientes forman una base del espacio \mathbb{R}^3 .

La principal característica de una base de vectores es que cualquier vector del espacio **R**³ puede escribirse en función de los vectores de la base.

• Sea $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ una base de \mathbb{R}^3 . Cualquier vector \vec{v} de \mathbb{R}^3 se puede escribir de la forma:

$$\vec{v} = a\vec{u}_1 + b\vec{u}_2 + c\vec{u}_3$$

Los números a, b y c se llaman coordenadas del vector \vec{v} respecto de la base $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$.

4. Sistemas de referencia

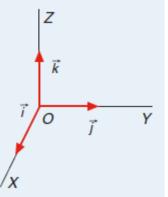
Para localizar un punto o un objeto en el espacio necesitamos un sistema de referencia. El más utilizado es el cartesiano.

• El sistema de referencia cartesiano en el espacio ℝ³ es:

$$\{O,\vec{i},\,\vec{j},\,\vec{k}\}$$

y está formado por:

- Un punto fijo O que llamamos origen del sistema.
- Una base de vectores \vec{i} , \vec{j} , \vec{k} unitarios y perpendiculares entre sí, es decir, ortonormales.



- 4. Sistemas de referencia
- 4.1. Coordenadas de un punto

Todo punto del espacio \mathbb{R}^3 tiene asociadas tres coordenadas en el sistema de referencia:

$$P(x_0, y_0, z_0)$$

Es equivalente a escribir que:

$$\overrightarrow{OP} = x_0 \overrightarrow{i} + y_0 \overrightarrow{j} + z_0 \overrightarrow{k} = (x_0, y_0, z_0)$$

4. Sistemas de referencia

4.2. Coordenadas de un vector

Sea el vector \overrightarrow{AB} de origen A y extremo B:

$$A(x_1, y_1, z_1)$$

$$B(x_2, y_2, z_2)$$

• El vector \overrightarrow{AB} tiene de coordenadas:

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2, y_2, z_2) - (x_1, y_1, z_1) = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

es decir, las coordenadas de su extremo menos las coordenadas de su origen.

• Los vectores \overrightarrow{OP} y \overrightarrow{AB} son representantes del mismo vector libre \vec{v} , es decir:

$$\vec{v} = \overrightarrow{OP} = \overrightarrow{AB} = (x_0, y_0, z_0) = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

de donde vemos que las coordenadas de un vector libre vienen dadas por las de uno de sus representantes con origen en el origen de coordenadas.

4. Sistemas de referencia

4.3. Coordenadas del punto medio de un segmento

Sea el segmento AB, de extremos $A(x_1, y_1, z_1)$ y $B(x_2, y_2, z_2)$. Observando la figura:

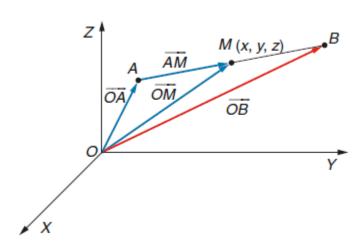
$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AM}$$

En coordenadas:

$$(x_2, y_2, z_2) = (x_1, y_1, z_1) + 2(x - x_1, y - y_1, z - z_1)$$

y operando obtenemos las coordenadas del punto medio M:

$$x = \frac{x_1 + x_2}{2}$$
 $y = \frac{y_1 + y_2}{2}$ $z = \frac{z_1 + z_2}{2}$



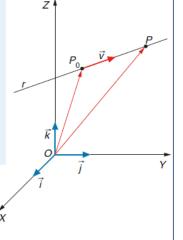
5. Ecuaciones de la recta

• La ecuación vectorial de la recta r que pasa por un punto fijo $P_0(x_0, y_0, z_0)$ y que tiene como vector director $\vec{v} = (a, b, c)$ viene dada por:

$$\overrightarrow{\mathrm{OP}} = \overrightarrow{\mathrm{OP}_0} + t \vec{v} \ \mathrm{con} \ t \in \mathbb{R}$$

que expresada en coordenadas es:

$$(x, y, z) = (x_0, y_0, z_0) + t(a, b, c)$$



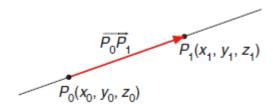
 Las ecuaciones paramétricas de la recta r que pasa por un punto fijo P₀(x₀, y₀, z₀) y que tiene como vector director v = (a, b, c) vienen dadas por:

$$\begin{cases} x = x_0 + ta \\ y = y_0 + tb & \text{con } t \in \mathbb{R} \\ z = z_0 + tc \end{cases}$$

5. Ecuaciones de la recta

Las ecuaciones en forma continua (o ecuación continua) de la recta r
que pasa por un punto fijo P₀(x₀, y₀, z₀) y que tiene como vector director
v
 = (a, b, c) vienen dadas por:

$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$



Las ecuaciones implícitas (o como intersección de dos planos) de la recta
 r que pasa por un punto fijo P₀(x₀, y₀, z₀) y que tiene como vector director
 v
 = (a, b, c) vienen dadas por:

$$\begin{cases} Ax + By + Cz = D \\ A'x + B'y + C'z = D' \end{cases}$$

6. Ecuaciones del plano



• La ecuación vectorial del plano π que pasa por un punto fijo $P_0(x_0, y_0, z_0)$ y que tiene como vectores directores $\vec{u} = (a, b, c)$ y $\vec{v} = (a', b', c')$ viene dada por:

$$\overrightarrow{OP} = \overrightarrow{OP_0} + t\vec{u} + s\vec{v} \text{ con } t \text{ y } s \in \mathbb{R}$$

que expresada en coordenadas es:

$$(x, y, z) = (x_0, y_0, z_0) + t(a, b, c) + s(a', b', c')$$

6. Ecuaciones del plano

• Las ecuaciones paramétricas del plano π que pasa por un punto fijo $P_0(x_0, y_0, z_0)$ y que tiene como vectores directores $\vec{u} = (a, b, c)$ y $\vec{v} = (a', b', c')$ vienen dadas por:

$$\begin{cases} x = x_0 + ta + sa' \\ y = y_0 + tb + sb' & \text{con } t \text{ y } s \in \mathbb{R} \\ z = z_0 + tc + sc' \end{cases}$$

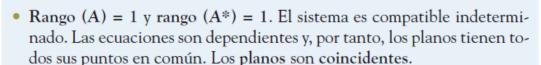
• La ecuación general o implícita del plano π que pasa por un punto fijo $P_0(x_0, y_0, z_0)$ y que tiene como vectores directores $\vec{u} = (a, b, c)$ y $\vec{v} = (a', b', c')$ viene dada por la ecuación:

$$Ax + By + Cz + D = 0$$

Esta expresión se obtiene del desarrollo del siguiente determinante:

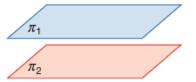
$$\begin{vmatrix} x - x_0 & a & a' \\ y - y_0 & b & b' \\ z - z_0 & c & c' \end{vmatrix} = 0$$

- 7. Posiciones relativas de dos y tres planos
- 7.1. Posiciones de dos planos

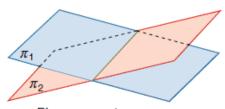


- Rango (A) = 1 y rango (A*) = 2. El sistema es incompatible. Las ecuaciones son independientes y, por tanto, los planos no tienen puntos en común. Los planos son paralelos.
- Rango (A) = 2 y rango (A*) = 2. El sistema es compatible indeterminado. Las ecuaciones son independientes y, por tanto, se cortan dando una recta. Los planos son secantes.

Planos coincidentes



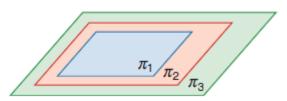
Planos paralelos



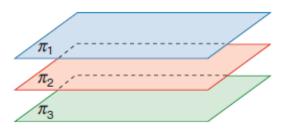
Planos secantes

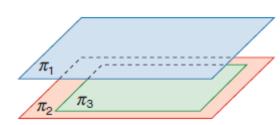
- 7. Posiciones relativas de dos y tres planos
- 7.2. Posiciones de tres planos

Rango (A) = 1 y rango (A*) = 1. El sistema es compatible indeterminado.
 Las tres ecuaciones son dependientes y, por tanto, los planos tienen todos sus puntos en común. Los planos son coincidentes.



Rango (A) = 1 y rango (A*) = 2. El sistema es incompatible. Las ecuaciones son independientes y, por tanto, los tres planos no tienen puntos en común. Los planos pueden ser paralelos y distintos dos a dos, o dos de los planos coincidentes y el otro paralelo y distinto de los anteriores.

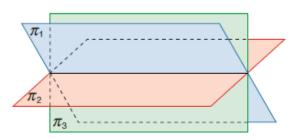


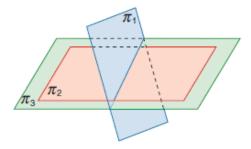


7. Posiciones relativas de dos y tres planos

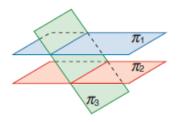
7.2. Posiciones de tres planos

Rango (A) = 2 y rango (A*) = 2. El sistema es compatible indeterminado. Existen dos ecuaciones independientes, y la otra es combinación de ellas. En este caso, las infinitas soluciones dependen de un parámetro, y los planos tienen los puntos en común de una recta. Los tres planos son distintos y secantes en una recta, o dos de los planos son coincidentes y el otro los corta en una recta.

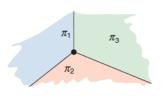




 Rango (A) = 2 y rango (A*) = 3. El sistema es incompatible. Los tres planos no tienen puntos en común. Las opciones posibles son: los planos se cortan dos a dos, o dos de los planos son paralelos y el otro corta a los anteriores.

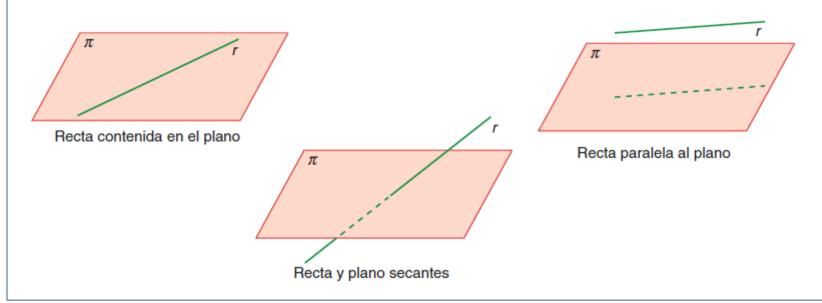


Rango (A) = 3 y rango (A*) = 3. El sistema es compatible determinado.
 Los planos son secantes en un punto.



8. Posiciones relativas de una recta y un plano

- Rango (A) = 2 y rango (A*) = 2. El sistema es compatible indeterminado.
 Los tres planos tienen una recta en común. La recta está contenida en el plano.
- Rango (A) = 2 y rango (A*) = 3. El sistema es incompatible. Los tres
 planos no tienen puntos en común. Los recta y el plano son paralelos.
- Rango (A) = 3 y rango (A*) = 3. El sistema es compatible determinado.
 La recta y el plano son secantes, es decir, se cortan en un punto.



9. Posiciones relativas de dos rectas

- Rango (A) = 2 y rango (A*) = 2. El sistema es compatible indeterminado.
 Las dos rectas tienen infinitos puntos en común. Las dos rectas son coincidentes.
- Rango (A) = 2 y rango (A*) = 3. El sistema es incompatible. Las dos rectas no tienen puntos en común, pero son coplanarias. Por tanto, las rectas son paralelas.
- Rango (A) = 3 y rango (A*) = 3. El sistema es compatible determinado.
 Las rectas son secantes, es decir, se cortan en un punto.
- Rango (A) = 3 y rango (A*) = 4. El sistema es incompatible. Las rectas no tienen puntos en común y, por tanto, se cruzan en el espacio.

